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In the calculation of quantum systems in most cases, the perturbation theory is
used. Lot of calculation techniques are used for both (nondegenerate and degenerate)
cases. In our contribution we evaluate the projection operator technique in such case
when the Hamiltonian of the given quantum system has point spectrum with finite
degree of degeneracy.

1. Introduction

Let us suppose that H0 represents Hamiltonian of unperturbed quantum
system which is defined on the separable Hilbert space H0. The set of eigenvalues
{E0

n}n∈N0 and set of orthonormal eigenvectors {|un〉}n∈N0 are known and N0 is a
subset of natural numbers � (i.e. N0 ⊂ N ). Let dk is degree of degeneracy of
the kth level of the Hamiltonian H0 and Dk presents the full set of indices for
the kth level (dk is the number of indices in Dk ⊂ N0 and N0 = ⋃

k∈N Dk). The
Schrödinger equation for the nonperturbed system has the form

H0 |un 〉 = E0
k |un 〉, n ∈ Dk,

Because of the degeneracy we have also

H0
∣∣E0

n 〉 = E0
k

∣∣E0
n 〉, n ∈ Dk, (1)
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where |E0
n〉 for n ∈ Dk is another set of eigenvectors belonging to the same eigen-

value E0
k .

Moreover let us suppose that perturbed Hamiltonian H is defined on the
same separable Hilbert space as Hamiltonian H0 is. The perturbation then is
V = H − H0 from which

H = H0 + V. (2)

Furthermore let us suppose that this perturbation is small, i.e. differences
between eigenvalues of the unperturbed {E0

n} and perturbed {En} quantum sys-
tems are small. The same is valid for the unperturbed {|un〉} and perturbed {|En〉}
orthonormal eigenvectors of given quantum system. It is assumed also that base
{|un〉} of the unperturbed quantum system is not given unambiguously.

Explanation of the mathematical bases of the quantum mechanics are given
in satisfactory level in books [1–3]. In the following we will use the technique of
projection operator formalism from these books.

2. Projection operator formalism

From the introduction follows, that calculation is complicated because of
the unambiguous of the orthonormal base {|un〉}. In this case the H0

k Hilbert
space is given, and it is spanned by the orthonormal base {|un〉} where n ∈ Dk.
The problem became extraordinary complicated if the degeneracy is not removed
in the first order (see [4]). In such cases the projection operator formalism is very
useful and very effective.

From the theory of linear operators it is known that each hermitian opera-
tor, defined on the separable Hilbert space is diagonalized by its eigenvectors, in
our case it means that H0 is given by the relation

H0 =
∑
k∈N0

E0
k |uk 〉〈uk| =

∑
k∈N

E0
k

∑
n∈Dk

|un 〉〈un| =
∑
k∈N

E0
kP0

k,

where the operator P0
k is given by the relation

P0
k =

∑
n∈Dk

|un 〉〈un| . (3)

Operator (3) is projection operator (orthogonal projector or projector only). This
operator is hermitian and idempotent, i.e.

(
P0

k

)+ = P0
k and

(
P0

k

)2 = P0
k

and P0
kP0

l = P0
l P0

k = 0 if l �= k. This operator projects into the space H0
k, i.e.

P0
k |un 〉 = |un 〉 ∀n ∈ Dk and P0

k |un 〉 = 0 ∀n /∈ Dk.
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These equations are equivalent to equations

P0
k |ϕ 〉 = ϕ〉 ∀ |ϕ 〉 ∈ H0

k and P0
k |ϕ 〉 = 0 ∀|ϕ〉 ∈ H0⊥

k ,

where H0⊥
k is the orthogonal complement to subspace H0

k . For these subspaces
the following equations are valid

H0 = H0
k ⊕ H0⊥

k = ⊕
k∈N

H0
k and H0⊥

k = ⊕
l∈N,l �=k

H0
l .

From the practical point of view it is convenient to introduce the complement
operator

Q0
k =

∑
l∈N,l �=k

P0
l = 1 − P0

k, (4)

where 1 is unit operator (identity operator) on the Hilbert space H0. The oper-
ator Q0

k is also projector and it is hermitian and idempotent operator, i.e.

(
Q0

k

)+ = Q0
k and

(
Q0

k

)2 = Q0
k.

It is clear that all properties of the operator P0
k given above are indepen-

dent from the given orthonormal base in Hilbert space H0
k. From this statement

follows advantage their use in the case of system with degenerate spectra.

3. Perturbation theory

For the derivation of perturbation formulae of degenerate systems we will
use the projection operator technique developed in the book [5].

The goal of perturbation theory is solving – in our case – stationary
Schrödinger equation

H |En 〉 = En |En 〉, (5)

where perturbed Hamiltonian H is possible write in the form (2) in which V rep-
resents small perturbation. The operator equation (5) is possible expand into the
operator-valued series so in this case it is assumed that H operator is given in the
form

H(λ) = H0 + λV,

where λ is perturbation parameter. According this assumption H(λ) is param-
etrized perturbed Hamiltonian. Eigenvalues and eigenvectors are also parame-
trized so the equation (5) has parametrized form

H(λ) |En(λ)〉 = En(λ) |En(λ)〉. (6)
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It is assumed that solutions [i.e. eigenvectors {|En(λ)〉} and eigenvalues En(λ)]
and projectors P0

k(λ) (which projects into the corresponding subspaces) is pos-
sible to expand into the Taylor series. These series converge to the results of the
perturbed Schrödinger equation (5) if λ → 1 and converges to the results of the
unperturbed Schrödinger equation (1) if λ → 0, i.e.

En(λ)
λ→0−−−→ and |En(λ)〉 λ→0−−−→

∣∣E0
n 〉,

where
{∣∣E0

n 〉}
n∈Dk

represents orthonormal base in Hilbert space H0
k. This base

does not necessary is equal to the base {|un 〉}n∈Dk
which represents solution of

the non-perturbed Schrödinger equation H0|un〉 = E0
n|un〉. This base {|un〉}n∈Dk

is chosen as the base in H0
k without any assumptions.

Eigenvalues of the equation (6) (under the assumption λ = 1) are roots of
the determinantal (or secular) equation

det (Hk(λ) − zKk(λ)) = 0. (7)

Operators Hk(λ) and Kk(λ) are given by the relations

Hk(λ) = P0
kH(λ)Pk(λ)P0

k resp. Kk(λ) = P0
kPk(λ)P0

k. (8)

According to [5] let us introduce a new Aj – operators as follows, for j = −1

A−1 = P0
k (9)

and for j�0

Aj = (−1)j
1(

E0
k − H0

)j+1 Q0
k = (−1)j

∑
n,n�=k

P0
n(

E0
k − E0

n

)j+1 . (10)

By the help of these operators the parametrized projectors Pk(λ) are

Pk(λ) =
∞∑

s=0

λs

( ∑
j0,j1,... ,js

j0+j1+···+js=−1

Aj0VAj1 . . . VAjs

)
def=

∞∑
s=0

λsP(s)
k . (11)

There may be such situation, that perturbation V does not remove the
degeneracy of the given level completely, i.e. secular equation (7) has manifold
roots. This problem the projector formalism solves without any problem.
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4. Solution of the perturbed Hamiltonian into the 3rd order

In this part we express the projectors P(s)
k defined by (11) for s = 1, 2 and

3 and by them help we set-up secular equation (7). By use of general eigenvalue
problem we find its eigenvalues {E(s)

n } and its orthonormal eigenvectors {|E(s)
n 〉}.

From relations (9), (10) and (11) it is obvious that

P(0)
k = P0

k

P(1)
k = A−1VA0 + A0VA−1 = P0

kV
1

E0
k − H0

Q0
k + Q0

k

1

E0
k − H0

VP0
k

P(2)
k = A−1VA−1VA1 + A0VA−1VA0 + A−1VA0VA0 + A−1VA1VA−1

+ A0VA0VA−1 + A1VA−1VA−1

= − P0
kVP0

kV
1

(E0
k − H0)2

Q0
k + 1

E0
k − H0

Q0
kVP0

kV
1

E0
k − H0

Q0
k

+ P0
kV

1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
k

− P0
kV

1(
E0

k − H0
)2 Q0

kVP0
k + 1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kVP0

k

− 1(
E0

k − H0
)2 Q0

kVP0
kVP0

k

P(3)
k = A−1VA−1VA−1VA2 + A−1VA−1VA0VA1 + A−1VA0VA−1VA1

+ A0VA−1VA−1VA1 + A−1VA−1VA1VA0 + A−1VA0VA0VA0

+ A0VA−1VA0VA0 + A−1VA1VA−1VA0 + A0VA0VA−1VA0

+ A1VA−1VA−1VA0 + A−1VA−1VA2VA−1 + A0VA−1VA1VA−1

+ A−1VA0VA1VA−1 + A−1VA1VA0VA−1 + A0VA0VA0VA−1

+ A1VA−1VA0VA−1 + A−1VA2VA−1VA−1 + A0VA1VA−1VA−1

+ A1VA0VA−1VA−1 + A2VA−1VA−1VA−1

= P0
kVP0

kVP0
kV

1(
E0

k − H0
)3 Q0

k

− P0
kVP0

kV
1

E0
k − H0

Q0
kV

1(
E0

k − H0
)2 Q0

k

− P0
kV

1

E0
k − H0

Q0
kVP0

kV
1(

E0
k − H0

)2 Q0
k

− 1

E0
k − H0

Q0
kVP0

kVP0
kV

1(
E0

k − H0
)2 Q0

k
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− P0
kVP0

kV
1(

E0
k − H0

)2 Q0
kV

1

E0
k − H0

Q0
k

+ P0
kV

1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
k

+ 1

E0
k − H0

Q0
kVP0

kV
1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
k

− P0
kV

1(
E0

k − H0
)2 Q0

kVP0
kV

1

E0
k − H0

Q0
k

+ 1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kVP0

kV
1

E0
k − H0

Q0
k

− 1(
E0

k − H0
)2 Q0

kVP0
kVP0

kV
1

E0
k − H0

Q0
k

+ P0
kVP0

kV
1(

E0
k − H0

)3 Q0
kVP0

k

− 1

E0
k − H0

Q0
kVP0

kV
1(

E0
k − H0

)2 Q0
kVP0

k

− P0
kV

1

E0
k − H0

Q0
kV

1(
E0

k − H0
)2 Q0

kVP0
k

− P0
kV

1(
E0

k − H0
)2 Q0

kV
1

E0
k − H0

Q0
kVP0

k

+ 1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kVP0

k

− 1(
E0

k − H0
)2 Q0

kVP0
kV

1

E0
k − H0

Q0
kVP0

k

+ P0
kV

1(
E0

k − H0
)3 Q0

kVP0
kVP0

k

− 1

E0
k − H0

Q0
kV

1(
E0

k − H0
)2 Q0

kVP0
kVP0

k

− 1(
E0

k − H0
)2 Q0

kV
1

E0
k − H0

Q0
kVP0

kVP0
k

+ 1(
E0

k − H0
)3 Q0

kVP0
kVP0

kVP0
k.

Above-mentioned relations are rather complicated [above that Q0
k operators rep-

resent summation according relation (4)], but the situation for secular equation
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(7) considerable simplifies owing to projection into the Hilbert space H0
k by the

help of projectors P0
k. In equation (8) Hk(λ) is given by the relation

Hk(λ) =
∞∑

s=0

λsH(s)
k .

Its dk × dk dimension rectangular matrix elements are given by the relations

H
(s)
k,mn =

〈
um

∣∣∣H(s)
k

∣∣∣ un

〉
for m, n ∈ Dk,

where

H(0)
k = P0

kH0P0
k and H(s)

k = P0
k

(
H0P(s)

k + VP(s−1)
k

)
P0

k for s � 1.

By the similar manner is defined Kk operator. It is given also by the rectangular
matrices dk × dk with matrix elements

K
(s)
k,mn =

〈
um

∣∣∣K(s)
k

∣∣∣ un

〉
for m, n ∈ Dk,

where

K(s)
k = P0

kP(s)
k P0

k for s � 0.

Operators P0
k, Q0

k and H0 in pairs mutually commute and for H(s)
k and for K(s)

k

we obtain following relations

H(0)
k = P0

kH0P0
k,

K(0)
k = P0

kP(0)
k P0

k = P0
k,

H(1)
k = P0

k

(
H0P(1)

k + VP(0)
k

)
P0

k = P0
kVP0

k,

K(1)
k = P0

kP(1)
k P0

k = 0,

H(2)
k = P0

k

(
H0P(2)

k + VP(1)
k

)
P0

k = −P0
kH0V

1(
E0

k − H0
)2 Q0

kVP0
k

+ P0
kVQ0

k

1

E0
k − H0

VP0
k,

K(2)
k = P0

kP(2)
k P0

k = −P0
kV

1(
E0

k − H0
)2 Q0

kVP0
k,
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H(3)
k = P0

k

(
H0P(3)

k + VP(2)
k

)
P0

k

= P0
kH0VP0

kV
1(

E0
k − H0

)3 Q0
kVP0

k

− P0
kH0V

1

E0
k − H0

Q0
kV

1(
E0

k − H0
)2 Q0

kVP0
k

− P0
kH0V

1(
E0

k − H0
)2 Q0

kV
1

E0
k − H0

Q0
kVP0

k

+ P0
kH0V

1(
E0

k − H0
)3 Q0

kVP0
kVP0

k,

− P0
kVP0

kV
1(

E0
k − H0

)2 Q0
kVP0

k

+ P0
kV

1

E0
k − H0

Q0
kV

1

E0
k − H0

Q0
kVP0

k

− P0
kV

1(
E0

k − H0
)2 Q0

kVP0
kVP0

k,

K(3)
k = P0

kP(3)
k P0

k = P0
kVP0

kV
1(

E0
k − H0

)3 Q0
kVP0

k

− P0
kV

1

E0
k − H0

Q0
kV

1(
E0

k − H0
)2 Q0

kVP0
k

− P0
kV

1(
E0

k − H0
)2 Q0

kV
1

E0
k − H0

Q0
kVP0

k

+ P0
kV

1(
E0

k − H0
)3 Q0

kVP0
kVP0

k.

For the sake of completeness we will give all matrix elements H
(s)
k,mn and

K
(s)
k,mn. For the matrix elements of the perturbation operator V we will use fol-

lowing designation

Vmn = 〈um |V| un〉

for all m, n and δmn for the Kronecker delta. Then

H
(0)
k,mn = E0

k δmn,

K
(0)
k,mn = δmn,

H
(1)
k,mn = Vmn,
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K
(1)
k,mn = 0,

H
(2)
k,mn = −E0

k

∑
p,p/∈Dk

VmpVpn(
E0

k − E0
p

)2 +
∑

p,p/∈Dk

VmpVpn

E0
k − E0

p

= −
∑

p,p/∈Dk

E0
p

VmpVpn(
E0

k − E0
p

)2 ,

K
(2)
k,mn = −

∑
p,p/∈Dk

VmpVpn(
E0

k − E0
p

)2 ,

H
(3)
k,mn = E0

k

∑
p,p∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
r

)3 − E0
k

∑
p,p/∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
p

) (
E0

k − E0
r

)2

− E0
k

∑
p,p/∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
p

)2 (
E0

k − E0
r

)

+ E0
k

∑
p,p/∈Dk

r,r∈Dk

VmpVprVrn(
E0

k − E0
p

)3 −
∑

p,p∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
r

)2

+
∑

p,p/∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
p

) (
E0

k − E0
r

) −
∑

p,p/∈Dk

r,r∈Dk

VmpVprVrn(
E0

k − E0
p

)2

=
∑

p,p∈Dk

r,r /∈Dk

E0
r

VmpVprVrn(
E0

k − E0
r

)3 +
∑

p,p/∈Dk

r,r∈Dk

E0
p

VmpVprVrn(
E0

k − E0
p

)3

−
∑

p,p/∈Dk

r,r /∈Dk

((
E0

k

)2 − E0
pE0

r

) VmpVprVrn(
E0

k − E0
p

)2 (
E0

k − E0
r

)2 .

K
(3)
k,mn =

∑
p,p∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
r

)3 −
∑

p,p/∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
p

) (
E0

k − E0
r

)2

−
∑

p,p/∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
p

)2 (
E0

k − E0
r

) +
∑

p,p/∈Dk

r,r∈Dk

VmpVprVrn(
E0

k − E0
p

)3

=
∑

p,p∈Dk

r,r /∈Dk

VmpVprVrn(
E0

k − E0
r

)3 +
∑

p,p/∈Dk

r,r∈Dk

VmpVprVrn(
E0

k − E0
p

)3

−
∑

p,p/∈Dk

r,r /∈Dk

(
2E0

k − E0
p − E0

r

) VmpVprVrn(
E0

k − E0
p

)2 (
E0

k − E0
r

)2 .



338 A. Teleki and T. Obert / Evaluation of the 3rd order perturbations

The approximate matrix elements of operators H and K up to the third
order of full perturbation (λ = 1) are

H̃k,mn = H
(0)
k,mn + H

(1)
k,mn + H

(2)
k,mn + H

(3)
k,mn

and

K̃k,mn = K
(0)
k,mn + K

(1)
k,mn + K

(2)
k,mn + K

(3)
k,mn.

By substitution of the matrix elements H̃k,mn and K̃k,mn into the secular equation
we obtain generalized eigenvalue problem

H̃ |En 〉 = EnK̃ |En 〉, (12)

where both H̃ and K̃ are dk×dk matrices and En are scalars. These scalars satisfy
the equation (12) and they are generalized eigenvalues and the corresponding
values |En〉 are generalized right eigenvectors. For the solution of the standard
and generalized eigenvalue problem by PC see eig procedure given in [6]. By use
this procedure one gain all generalized eigenvalues and all generalized eigenvec-
tors.
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